Pentamethylcyclopentadienyliridium(III) complexes containing tertiary phosphorus chalcogenide ligands: crystal structure of $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\boldsymbol{\eta}^{2}\left(\mathrm{SPPh}_{2}\right)_{2} \mathrm{CH}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right\}\right] \mathrm{BF}_{4} \cdot 0.5 \mathrm{Me}_{2} \mathrm{CO}$
 Mauricio Valderrama *, Raúl Contreras
 Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Santiago-22, Chile

Received 21 March 1995; in revised form 31 August 1995

Abstract

Neutral iridium(III) complexes of the unidentate P-donor ligands dppm, dppmS and dppmSe, and cationic complexes with these ligands acting in their bidentate form have been prepared and characterized. Similar cationic complexes with the symmetrical bidentate dichalcogenide ligands dppmS_{2} and $\mathrm{dppmSe}{ }_{2}$ have been described. These compounds react with sodium hydride in tetrahydrofuran or with thallium pyrazolate in dichloromethane to yield the new cationic complexes $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left(\eta^{3}\left(\mathrm{EPPh}_{2}\right)_{2} \mathrm{CH}-\mathrm{C}, \mathrm{E}, \mathrm{E}^{\prime}\right\}\right]^{+}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ in which the anionic methanide dichalcogenide ligand is acting as a tripod ligand with a C,E, E^{\prime}-donor set. However, the complexes $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}\left(\eta^{2} \mathrm{dppmE}_{2}\right)\right] \mathrm{BF}_{4}$ react with $\mathrm{P}(\mathrm{OMe})_{3}$ in the presence of TlBF_{4}, to give the dicationic compounds $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left(\mathrm{P}(\mathrm{OMe})_{3}\right]\left(\eta^{2} \mathrm{dpmFE}_{2}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}$. In these complexes, the $\mathrm{P}(\mathrm{OMe})_{3}$ ligand is transformed into a coordinated $\mathrm{PO}(\mathrm{OMe})_{2}$ group by reaction with sodium iodide in acetone. The structure of the complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left(\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left(\eta^{2} \mathrm{dppmS}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right)\right] \mathrm{BF}_{4}$. $0.5 \mathrm{Me}_{2} \mathrm{CO}$ have been determined by single crystal X-ray diffraction methods.

Keywords: Iridium; Cyclopentadienyl complexes; Tertiary chalcogenides; Phosphonate complexes

1. Introduction

Several derivatives of transition metals with the bis(diphenylphosphine)methane disulphide ligand, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$, have been described [1-7]. $\mathrm{Re}-$ cent studies have shown that a methylene proton of the ligand, free or coordinated, can be removed by strong bases to form neutral complexes with the anionic ligand acting as $\mathrm{S}, \mathrm{S}^{\prime}$ - or C, S-donor ligand [6-9].

We recently described the synthesis of cationic rhodium(III) and ruthenium(II) complexes containing dichalcogenide ligands derived from 1,2-bis(diphenylphosphine)methane (dppm), of general formula $\left[(\text { ring }) \mathrm{MCl}\left(\eta^{2} \text { dppmE } \mathrm{E}_{2}-\mathrm{E}, \mathrm{E}^{\prime}\right)\right]^{+}$, in which (ring) $\mathrm{M}=$ $\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}, \quad\left(\eta^{6} \mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}$ and dppmE $2=\mathrm{Ph}_{2} \mathrm{P}$ $(\mathrm{S}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}, \quad \mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{2}$ [10,11]. In these compounds, the methylene protons of the coordinated ligand react with sodium hydride forming a methanide group which displaces the chloride ligand leading to cationic complexes of the type [(ring) MCl

[^0]$\left.\left\{\eta^{3}\left(\mathrm{EPPh}_{2}\right)_{2} \mathrm{CH}-\mathrm{C}, \mathrm{E}, \mathrm{E}^{\prime}\right\}\right]^{+}$, in which the resulting anionic ligands are bound to the metal centre as $\mathrm{C}, \mathrm{E}, \mathrm{E}^{\prime}-\mathrm{tri}$ pod ligands.

In this paper we describe the synthesis and characterization of several neutral and cationic pentamethylcyclopentadienyliridium(III) complexes with mono- and dichalcogenide ligands, as well as the reactivity of some of the cationic complexes towards the bases sodium hydride and thallium pyrazolate. The preparation and characterization of the dicationic complexes $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\eta^{2} \mathrm{dppmE} \mathrm{E}_{2}-\mathrm{E}, \mathrm{E}\right\}\right]\left(\mathrm{BF}_{4}\right)_{2}$ and the transformation of the trimethylphosphite group into a coordinated dimethylphosphonate ligand are also described. The molecular structure of the complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\eta^{2} \mathrm{dppmS}_{2}-\mathrm{S}, \mathrm{S}\right\}\right] \mathrm{BF}_{4} \cdot 0.5$ $\mathrm{Me}_{2} \mathrm{CO}$, determined by single crystal X-ray diffraction, is also reported. Part of this work has been the subject of a preliminary communication [12].

2. Experimental details

Elemental analyses were made with Heraeus Mikro Standard and Perkin-Elmer 240B microanalysers. In-
frared spectra were recorded on a Bruker IFS-25 spectrophotometer (over the range $4000-400 \mathrm{~cm}^{-1}$) using KBr pellets. Conductivities were measured in ca. $5 \times$ $10^{-4} \mathrm{M}$ acetone solution using a WTW LF-521 conductimeter. ${ }^{1} \mathrm{H}(200 \mathrm{MHz}),{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(81 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (50 MHz) spectra were recorded on a Bruker $\mathrm{AC}-200 \mathrm{P}$ spectrometer and chemical shifts are reported relative to SiMe_{4} and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ (positive shifts downfield).

All reactions were carried out by Schlenk techniques under purified nitrogen. Reagent grade solvents were dried, distilled, and stored under a nitrogen atmosphere. The ligands $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{2}$ (dppmSe) $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se})-$ $\mathrm{CH}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{2}$ (dppmSe e_{2}), $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ (dp$\left.\mathrm{pmS}_{2}\right)$ and the starting binuclear complex $\left[\left\{\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.\right.$ -$\left.\operatorname{IrX}(\mu-X)\}_{2}\right](X=C l, I)$ were prepared by published procedures [13,14].

3. Preparations of complexes

3.1. $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}_{2}\left(\eta^{\prime} d p p m-P\right)\right](1)$

A mixture of the binuclear complex $\left[\left\{\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{IrCl}-\right.\right.$ ($\mu-\mathrm{Cl})\}_{2}$] ($120 \mathrm{mg} ; 0.15 \mathrm{mmol}$) and the ligand dppm ($116 \mathrm{mg} ; 0.30 \mathrm{mmol}$) in benzene (30 ml) was boiled under reflux for 2 h . The resulting solution was evaporated to a small volume (5 ml) and the complex crystallized by addition on n-hexane. Yield: 202 mg of yellow crystals (86%). Anal. Found: C, $53.80 ; \mathrm{H}, 4.82$. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrP}_{2}$. Calc.: C, 53.70 ; $\mathrm{H}, 4.73 \%$.

3.2. $\left[\left(\eta^{5} C_{5} \mathrm{Me}_{5}\right) I r C_{2}\left(\eta^{\prime} d p p m E-P\right)\right](E=S(2), S e(3))$

A mixture of complex 1 ($245 \mathrm{mg} ; 0.31 \mathrm{mmol}$) with a slight excess of sulphur ($11 \mathrm{mg} ; 0.34 \mathrm{mmol}$) or grey selenium (27 mg ; 0.34 mmol) was boiled under reflux in benzene (30 ml) for 2 h . The resulting solution was evaporated to a small volume (5 ml) and the complex crystallized by addition on n-hexane. (2) Yield: 221 mg of yellow crystals (86%). Anal. Found: C, 51.02 ; H, 4.42. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrP}_{2} \mathrm{~S}$. Calc.: C, $51.59 ; \mathrm{H}, 4.57 \%$. IR(KBr): $\nu(\mathrm{PS}), 628 \mathrm{~cm}^{-1}$. (3) Yield: 150 mg of orange-yellow crystals (56\%). Anal. Found: C, 48.55; $\mathrm{H}, 4.60 . \mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrP}_{2} \mathrm{Se}$. Calc.: C, 48.79 ; H, 4.33%. $\operatorname{IR}(\mathrm{KBr}): \nu(\mathrm{PSe}), 533 \mathrm{~cm}^{-1}$.

$$
\begin{aligned}
& \text { 3.3. }\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrCl}\left(\eta^{2} L\right)\right] \mathrm{ClO}_{4}(L=d p p m-P, P \quad \text { (4), } \\
& d p p m S e-P, \operatorname{Se}(5), d p p m S-P, S(6))
\end{aligned}
$$

The complexes were prepared by two routes. (i) A slurry of $\left[\left\{\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5} \operatorname{IrCl}(\mu-\mathrm{Cl})\right\}_{2}\right](80 \mathrm{mg} ; 0.1 \mathrm{mmol})$, the ligand dppm ($77 \mathrm{mg} ; 0.2 \mathrm{mmol}$) or $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Se})-$ $\mathrm{Ph}_{2}(93 \mathrm{mg} ; 0.2 \mathrm{mmol})$, and $\mathrm{NaClO}_{4}(25 \mathrm{mg} ; 0.2 \mathrm{mmol})$ in acetone (20 ml) was boiled under reflux for 3 h . The solution obtained was evaporated to dryness and the
solid residue extracted with the minimal amount of chloroform and the complex precipitated by addition of diethyl ether(3) or n-hexane(4). (ii) A mixture of complex $2(200 \mathrm{mg} ; 0.24 \mathrm{mmol})$ and $\mathrm{NaClO}_{4}(30 \mathrm{mg} ; 0.24$ mmol) in acetone (30 ml) was boiled under reflux for 3 h. The solution was evaporated to dryness, extracted with chloroform and filtered through Kieselguhr. Orange crystals of the complex were obtained by addition of n-hexane. (4) Yellow crystals were obtained from acetone-diethyl ether. Yield: 133 mg (84%). Anal. Found: C, 49.35 ; $\mathrm{H}, 4.58 . \mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrO}_{4} \mathrm{P}_{2}$. Calc.: C , $49.62 ; \mathrm{H}, 4.40 \%$. (5) Orange crystals were obtained from chloroform-n-hexane. Yield: 270 mg (78%). Anal. Found: C, 45.62; H, 3.94. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrO}_{4} \mathrm{P}_{2} \mathrm{Se}$. Calc.: C, $45.40 ; \mathrm{H}, 4.00 \%$. IR(KBr): $\nu(\mathrm{PSe}), 530 \mathrm{~cm}^{-1}$. (6) Yield: 209 mg (97\%). Anal. Found: C, 47.87; H, 4.22; $\mathrm{S}, 3.65 . \mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrO}_{4} \mathrm{P}_{2} \mathrm{~S}$. Calc.: C, 47.84 ; $\mathrm{H}, 4.20$; $\mathrm{S}, 3.55 \%$. $\mathrm{IR}(\mathrm{KBr}): \nu(\mathrm{PS}), 576 \mathrm{~cm}^{-1}$.
3.4. $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}\left(\eta^{2} L^{\prime}\right)\right] \mathrm{ClO}_{4} \quad\left(L^{\prime}=d p p m S_{2}-S, S^{\prime}\right.$ (7a), dppmSe $e_{2}-S e, S e^{\prime}(8 a)$)

A mixture of complex $\left[\left\{\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{irCl}(\mu-\mathrm{Cl})\right\}_{2}\right]$ ($120 \mathrm{mg} ; 0.15 \mathrm{mmol}$), the corresponding ligand $\mathrm{L}^{\prime}(0.30$ mmol) and $\mathrm{NaClO}_{4}(37 \mathrm{mg} ; 0.30 \mathrm{mmol}$) in acetone (30 ml) was boiled under reflux for 2 h . The solution obtained was evaporated to dryness and the residue was extracted with chloroform (10 ml). The complexes were crystallized by careful addition of n-hexane. (7a) Yield: 230 mg of orange crystals (84%). Anal. Found: C, 46.32; H, 4.20; S, 7.04. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrO}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}$. Calc.: C , $46.20 ; \mathrm{H}, 4.10 ; \mathrm{S}, 6.91 \%$. IR(KBr): $\nu(\mathrm{PS}), 582 \mathrm{~cm}^{-1}$. (8a) Yield: 290 mg of red crystals (96%). Anal. Found: C, 41.77; H, 3.39. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrO}_{4} \mathrm{P}_{2} \mathrm{Se}_{2}$. Calc.: C, 41.87; H, 3.71\%. IR(KBr): $\nu(\mathrm{PSe}), 524 \mathrm{~cm}^{-1}$.

The analogous tetrafluoroborate complexes $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrCl}\left(\eta^{2}-\mathrm{L}^{\prime}\right)\right] \mathrm{BF}_{4}, \mathrm{~L}^{\prime}=\mathrm{dppmS}_{2}-\mathrm{S}, \mathrm{S}^{\prime}(\mathbf{7 b})$ and dppmSe ${ }_{2}-\mathrm{Se}^{2}, \mathrm{Se}^{\prime}(\mathbf{8 b})$, were prepared using TlBF_{4} instead NaClO_{4}. In this case, the reaction was carried out at room temperature by stirring for 1 h . After filtration the TlCl formed, the acetone solution was concentrated to a small volume and the complexes precipitated by addition of diethyl ether. Red crystals were obtained from acetone-diethyl ether. (7b) Yield: 94\%. Anal. Found: C, 46.57; H, 4.34; S, 6.72. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{BClF}_{4} \mathrm{IrP}_{2} \mathrm{~S}_{2}$. Calc.: C, 46.80; H, 4.15; S, 7.14\%. IR(KBr): $\nu(\mathrm{PS})$, $572 \mathrm{~cm}^{-1} . \Gamma_{\mathrm{M}}=131 \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \Omega^{-1}$. (8b) Yield: 85%. Anal. Found: $\mathrm{C}, 42.19 ; \mathrm{H}, 3.74, \mathrm{C}_{35} \mathrm{H}_{37} \mathrm{BClF}_{4}{ }^{-}$ $\mathrm{IrP}_{2} \mathrm{Se}_{2}$. Calc.: $\mathrm{C}, 42.38 ; \mathrm{H}, 3.76 \%$. IR(KBr): $\nu(\mathrm{PSe})$, $505 \mathrm{~cm}^{-1} . \Gamma_{\mathrm{M}}=127 \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \Omega^{-1}$.

3.5. $\left[\left(\eta^{5} C_{5} \mathrm{Me}_{5}\right) \operatorname{IrI}\left(\eta^{2} d p p m S_{2}-S, S^{\prime}\right)\right] B F_{4}$ (9)

A slurry of $\left[\left\{\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrI}(\mu-\mathrm{I})\right\}_{2}\right]$ ($174 \mathrm{mg} ; 0.15$ $\mathrm{mmol})$, the ligand dppmS_{2} ($135 \mathrm{mg} ; 0.30 \mathrm{mmol}$) and $\mathrm{TlBF}_{4}(88 \mathrm{mg} ; 0.30 \mathrm{mmol})$ in acetone (20 ml) was
stirred at room temperature for 1 h . The TII formed was filtered off and the solution obtained was evaporated to a small volume. The addition of diethyl ether formed an orange-red solid which was recrystallized from ace-tone-diethyl ether. (9) Yield: 271 mg (83%). Anal. Found: C, 42.00; H, 3.77; S, 6.09. $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{BF}_{4} \mathrm{IIrP}_{2} \mathrm{~S}_{2}$. Calc.: C, 42.48; H, 3.77; S, 6.45\%. IR(KBr): $\nu(\mathrm{PS})$, $564 \mathrm{~cm}^{-1} . \Gamma_{\mathrm{M}}=142 \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \Omega^{-1}$.
3.6. $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{In}\left\{\eta^{3}\left(E P P h_{2}\right)_{2} \mathrm{CH}-\mathrm{C}, E, E^{\prime}\right\}\right] \mathrm{ClO}_{4}(E=$ $S(10), S e(11))$

The complexes were prepared by two routes. (i) The addition of a slight excess of sodium hydride (4.5 mg of 80% dispersion in mineral oil, 0.15 mmol) to a solution of complex $7 \mathbf{a}$ or $\mathbf{8 a}(0.15 \mathrm{mmol})$ in anhydrous tetrahydrofuran (10 ml) produced immediate evolution of hydrogen. The suspension formed was stirred until the evolution of hydrogen ceased and the excess of sodium hydride was filtered off. The resulting solution was evaporated to dryness, and the residue was extracted with dichloromethane (15 ml). The addition of n-hexane caused the precipitation of the complexes, which were washed with diethyl ether and dried in vacuo. Yield: about 60%. (ii) A solution of complex 7a or 8a (0.1 mmol) in dichloromethane (20 ml) was treated with thallium pyrazolate [15] (27 mg ; 0.1 mmol). After stirring for 2 h at room temperature, the mixture was filtered through cellulose to remove the TlCl formed. The solution obtained was evaporated to dryness and the solid residue was extracted with the minimum amount of acetone. Careful addition of diethyl ether and cooling to $-20^{\circ} \mathrm{C}$, caused the formation of orange crystals. (10) Yield: $76 \mathrm{mg}(79 \%)$. Anal. Found: C, 48.47; H, 4.38; S, 6.91. $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{ClIrO}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}$. Calc.: C , 48.09; H, 4.12; S, 6.96%. IR(KBr): $\nu(\mathrm{PS}), 602 \mathrm{~cm}^{-1}$. $\Gamma_{\mathrm{M}}=114 \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \Omega^{-1}$. (11) Yield: $74 \mathrm{mg}(77 \%)$. Anal. Found: C, 43.12; $\mathrm{H}, 3.79 . \mathrm{C}_{35} \mathrm{H}_{36} \mathrm{ClIrO}_{4} \mathrm{P}_{2} \mathrm{Se}_{2}$. Calc.: C, 43.39; H, 3.72\%. IR(KBr): $\nu(\mathrm{PSe}), 540 \mathrm{~cm}^{-1}$. $\Gamma_{\mathrm{M}}=132 \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \Omega^{-1}$.
3.7. $\left[\left(\eta^{5} C_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left\{P(O M e)_{3}\right\}\left\{\eta^{2} d p p m E_{2}-E, E^{\prime}\right\}\right]\left(B F_{4}\right)_{2}$
$(E=S(12)$ Se ($E=S$ (12), $\mathrm{Se}(13)$)

To a mixture of complex $\mathbf{7 b}$ or $\mathbf{8 b}(0.15 \mathrm{mmol})$ and TlBF_{4} ($44 \mathrm{mg} ; 0.15 \mathrm{mmol}$) in acetone (15 ml) was added a slight excess of $\mathrm{P}(\mathrm{OMe})_{3}(25 \mathrm{mg} ; 0.20 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h , the thallium chloride formed was filtered off through Kieselguhr and the solution evaporated to a small volume. The careful addition of diethyl ether gave the complexes as yellow crystals. (12) Yield: 80 mg (75%). Anal. Found: C, 42.89; H, 4.49; S, 6.29. $\mathrm{C}_{38} \mathrm{H}_{46^{-}}$ $\mathrm{B}_{2} \mathrm{~F}_{8} \mathrm{IrO}_{3} \mathrm{P}_{3} \mathrm{~S}_{2}$. Calc.: $\mathrm{C}, 42.51 ; \mathrm{H}, 4.32 ; \mathrm{S}, 5.97 \%$. $\operatorname{IR}(\mathrm{KBr}): \nu(\mathrm{PS}), 530 \mathrm{~cm}^{-1} . \Gamma_{\mathrm{M}}=233 \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \Omega^{-1}$. (13) Yield: $124 \mathrm{mg}(88 \%)$. Anal. Found: C, 39.74; H,
4.20. $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{IrO}_{3} \mathrm{P}_{3} \mathrm{Se}_{2}$. Calc.: C, $39.10 ; \mathrm{H}, 3.97 \%$. $\operatorname{IR}(\mathrm{KBr}): \nu(\mathrm{PSe}), 527 \mathrm{~cm}^{-1} . \Gamma_{\mathrm{M}}=271 \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ Ω^{-1}.
3.8. $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left(\mathrm{PPh}_{3}\right)\left\{\eta^{2} \mathrm{dppmSe} \mathrm{e}_{2}-\mathrm{Se}, \mathrm{Se} e^{\prime}\right\}\right]\left(B F_{4}\right)_{2}$

To a mixture of complex $\mathbf{8 b}(60 \mathrm{mg} ; 0.06 \mathrm{mmol})$ and TlBF_{4} ($18 \mathrm{mg} ; 0.12 \mathrm{mmol}$) in acetone (15 ml) was added a slight excess of $\mathrm{PPh}_{3}(16 \mathrm{mg} ; 0.06 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h , the thallium chloride formed was filtered off through Kieselguhr and the solution was evaporated to a small volume. The addition of diethyl ether gave the complex as a yellow solid, which was recrystallized from ace-tone-diethyl ether. Yield: $66 \mathrm{mg}(91 \%)$. Anal. Found: C, 47.76; H, 4.01. $\mathrm{C}_{53} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{IrP}_{2} \mathrm{Se}_{2}$. Calc.: C, 47.39; $\mathrm{H}, 4.04 \%$. IR(KBr): $\nu(\mathrm{PSe}), 525 \mathrm{~cm}^{-1}$.

3.9. $\left[\left(\eta^{s} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\eta^{2} d p p m E_{2}-E, E^{\prime}\right\}\right] I(E$ $=S(15), S e(16))$

A solution of complex $\mathbf{1 2}$ or $\mathbf{1 3}(0.1 \mathrm{mmol})$ and sodium iodide (0.5 mmol) in acetone (10 ml) was stirred at room temperature for 24 h . The solution was evaporated to dryness and the solid residue was extracted with chloroform (10 ml). The addition of hexane or diethyl ether caused the precipitation of the complexes as orange-yellow crystals. (15) Yield: 78 mg (91%). Anal. Found: $\mathrm{C}, 43.00$; $\mathrm{H}, 4.12 ; \mathrm{S}, 5.96$. $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{IIrO}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}$. Calc.: $\mathrm{C}, 43.92 ; \mathrm{H}, 4.28: \mathrm{S}, 6.34 \%$. $\operatorname{IR}(\mathrm{KBr}): \nu(\mathrm{PS}), 568 ; \nu(\mathrm{PO}), 1100$ and $\delta(\mathrm{PO}), 585$ cm^{-1}. (16) Yield: $92 \mathrm{mg}(86 \%)$. Anal. Found: C, 39.66 ; $\mathrm{H}, 3.91 . \mathrm{C}_{37} \mathrm{H}_{43} \mathrm{IIrO}_{3} \mathrm{P}_{2} \mathrm{Se}_{2}$. Calc.: C, 40.19 ; $\mathrm{H}, 3.92 \%$. $\operatorname{IR}(\mathrm{KBr}): \nu(\mathrm{PSe}), 529 ; \nu(\mathrm{PO}), 1102$ and $\delta(\mathrm{PO}), 580$ cm^{-1}.

3.10. $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\eta^{2}\left(d p p m S_{2}-S, S^{\prime}\right\}\right] B F_{4}\right.$ (17)

The complex was prepared by two routes. (i) A solution of complex 15 ($182 \mathrm{mg} ; 0.18 \mathrm{mmol}$) in acetone solution (15 ml) was treated with an excess of TlBF_{4} ($74 \mathrm{mg} ; 0.25 \mathrm{mmol}$). After stirring for 30 min , the mixture was evaporated to dryness and extracted with chloroform (15 ml). Partial evaporation of solvent and addition of diethyl ether caused the formation of yellow crystals, which were recrystallized from acetone-diethyl ether and dried in vacuo. Yield: 110 mg (63%). (ii) A solution of complex 12 ($54 \mathrm{mg} ; 0.05 \mathrm{mmol}$) in dichloromethane solution was treated with a large excess of potassium tert-butoxide (1 g). After stirring for 8 h , the mixture was filtered and evaporated to a small volume. The addition of n-hexane gave a yellow solid. Yield: $18 \mathrm{mg}(35 \%)$. Anal. Found: C, $46.90 ; \mathrm{H}, 4.40$; S, 6.22. $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{BF}_{4} \mathrm{IrO}_{3} \mathrm{P}_{2} \mathrm{~S}_{2} \cdot 0.5\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$. Calc.: C,
 $\Gamma_{\mathrm{M}}=127 \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \Omega^{-1}$.

3.11. Crystal structure of $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\right.$ $\left\{\eta^{2}\left(d p p m S_{2}-S, S^{\prime}\right\}\right] B F_{4} \cdot 0.5 M e_{2} C O$ (17)

Suitable crystals were obtained from a slow diffusion of diethyl ether into an acetone solution of the complex. Crystal data and details of measurements and refinements are summarized in Table 1. A list of observed and calculated structure factors, anisotropic thermal parameters, H atom coordinates, bonds lengths and bond angles are available for the authors on request.

4. Results and discussion

The binuclear complex $\left[\left\{\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrCl}(\mu-\mathrm{Cl})\right\}_{2}\right]$ reacts with dppm in benzene solution by cleavage of the chlorine bridges to yield the neutral complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}_{2}\left(\eta^{1} \mathrm{dppm}-\mathrm{P}\right)\right]$ (1). The uncoordinated P -atom of this complex reacts with elemental sulphur or selenium in refluxing benzene creating the monosulphide or selenide ligands, leading to the complexes $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}_{2}\left(\eta^{1} \mathrm{dppmE}-\mathrm{P}\right)\right](\mathrm{E}=\mathrm{S}(2)$, $\mathrm{Se}(3))$.

These complexes were isolated as stable microcrystalline solids. Their spectra in KBr pellets show the characteristic absorptions of the non-coordinated $\mathrm{P}=\mathrm{S}$ or $\mathrm{P}=\mathrm{Se}$ group. The ${ }^{1} \mathrm{H}$ NMR spectra of complex 1 exhibit the expected doublet signal for the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring and a doublet of doublets for the methylene protons. For complexes 2 and 3, the CH_{2} protons appear as an apparent triplet signal. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectra show two doublet resonances, where the phosphorus atom bonded to the metal centre (P_{A}) resonate at lower field than the non-coordinated $\mathrm{P}_{\mathrm{B}}(\mathrm{E})$ group. Relevant NMR chemical shifts and coupling constants are listed in Table 2.

When the above reaction was carried out in acetone at reflux temperature, in the presence of NaClO_{4}, cationic complexes with the ligands L acting in their bidentate form were obtained, $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{IrCl}\left(\eta^{2} \mathrm{~L}\right)\right]$ ClO_{4} ($\mathrm{L}=\mathrm{dppm}$ (4), dppmSe (5), dppmS (6)). Similarly, the reaction of the symmetrical ligands dppmS_{2} and $\mathrm{dppmSe} \mathrm{e}_{2}$ with the binuclear starting iridium(III) complex in refluxing acetone, in the presence of NaClO_{4}, lead to the formation of the corresponding cationic complexes, $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrCl}\left(\eta^{2} \mathrm{dppmE}_{2}-\right.\right.$ $\left.\left.\mathrm{E}, \mathrm{E}^{\prime}\right)\right] \mathrm{ClO}_{4}(\mathrm{E}=\mathrm{S}(7 \mathbf{a}), \mathrm{Se}(\mathbf{8 a}))$. However, these reactions can be carried out under mild conditions, using TlBF_{4} instead NaClO_{4}, with formation of the tetrafluoroborate derivatives, $\mathbf{7 b}$ and $\mathbf{8 b}$ (Scheme 1).

All cationic compounds were isolated as stable microcrystalline solids and behave as $1: 1$ electrolytes in acetone solution. In all cases their infrared spectra in KBr show the presence of the uncoordinated anion
(ClO_{4}^{-}: ca. $1100,620 \mathrm{~cm}^{-1} ; \mathrm{BF}_{4}^{-}$: ca. $1100,520 \mathrm{~cm}^{-1}$) together with the absorption bands corresponding to the coordinated $\mathrm{P}=\mathrm{S}$ or $\mathrm{P}=\mathrm{Se}$ groups. As expected, the $\nu(\mathrm{PE})$ stretching are shifted to lower frequencies (ν (PS) $=564-582 \mathrm{~cm}^{-1} ; \nu(\mathrm{PSe})=505-530 \mathrm{~cm}^{-1}$) relative to the free ligand ($\nu(\mathrm{PS}): 628 \mathrm{~cm}^{-1}, \nu(\mathrm{PSe}): 531 \mathrm{~cm}^{-1}$) [2,16]. Their ${ }^{1} \mathrm{H}$ NMR spectra in CDCl_{3} exhibit the expected resonances to the phenyl groups and the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring, together with two doublet of triplets at the range δ 4.3-6.0 ppm corresponding to the non-equivalent methylene protons H_{a} and H_{b}. The proton endo to the chlorine atom is labelled H_{a} and is assigned to the highest field resonance by comparison with the spectra of the similar iodide derivative, $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{IrI}\left\{\eta^{2} \mathrm{dp}-\right.\right.$ $\left.\left.\mathrm{pmS}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right\}\right] \mathrm{BF}_{4}$ (9), which shows no important variation for the lowest field resonance (H_{b}) and a shift for the highest field resonance $\left(\mathrm{H}_{\mathrm{a}}\right)$. These assignments are in accord with those reported for methylene protons of the bis(diphenylphosphine)methane ligand in the platinum(II) complex $\left[\mathrm{Pt}_{2} \mathrm{X}_{2}(\mu-\mathrm{S})(\mu \text {-dppm })_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$,

Table 1
Crystal and refinement data for complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{Ir}\left(\mathrm{PO}(\mathrm{OMe})_{2}\right)\right.\right.$ $\left.\left\{\eta^{2}\left(\mathrm{SPPh}_{2}\right)_{2} \mathrm{CH}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right\}\right] \mathrm{BF}_{4} \cdot 0.5 \mathrm{Me}_{2} \mathrm{CO}$

Empirical formula Colour, habit	$\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{BF}_{4} \mathrm{IrO}_{3} \mathrm{P}_{2} \mathrm{~S}_{2} \cdot 0.5\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ orange, prism
Crystal size (mm)	$0.2 \times 0.2 \times 0.4$
Crystal system	monoclinic
Space group	P2, /c
Cell dimensions	
$a(\AA)$	16.485(3)
b (${ }_{\text {A }}$)	11.923 (3)
$c(\AA)$	22.028(5)
$\beta\left({ }^{\circ}\right.$)	95.25(2)
Cell volume (${ }^{\circ}{ }^{3}$)	4311.8(17)
Z	4
Formula weight	1000.8
$D_{\text {calc }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.542
$\mu(\mathrm{MoK} \alpha)\left(\mathrm{cm}^{-1}\right)$	33.38
Diffractometer	Siemens P3/PC
Radiation	Mo K $\alpha(\lambda=0.71073 \AA)$
Temperature (K)	293
Scan technique	$2 \theta-\theta$
Monochromator	highly oriented graphite crystal
Index ranges	$\begin{aligned} & -22 \leqslant h \leqslant 22 ; \\ & 0 \leqslant k \leqslant 16 ; \\ & 0 \leqslant l \leqslant 30 \end{aligned}$
No. reflections measured	11504
No. independent reflections $\left(R_{\mathrm{int}}=0.00 \%\right)$	11504
Observed reflections	5745
$F>3.0 \sigma$ (F)	
Absorption correction	$\begin{aligned} & \text { DIFABS: } \min =0.826, \\ & \max =1.151 \end{aligned}$
Refinements system	Siemens Shelxtl plus (PC)
Solution	direct methods
No. parameters refined	499
R (\%)	3.45
$R_{\mathrm{n}^{\prime}}$ (\%)	3.74
Goodness-of-fit	1.18

I) [17]. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes with symmetrical ligands (4,7-9) show a singlet resonance for the equivalent phosphorus atoms, whilst the spectra of complexes with unsymmetrical ligands $(5,6)$ show two doublet resonances, where the P bonded to the metal $\left(P_{A}\right)$ resonates at lower field than the $P_{B}=E$ group.

The cationic complexes 7a and $8 \mathbf{8}$ react with sodium hydride in tetrahydrofuran solution by deprotonation of
the methylene group, yielding new monocationic complexes of general formula $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left(\eta^{3}\left(\mathrm{EPPh}_{2}\right)_{2^{-}}\right.\right.$ $\left.\mathrm{CH}-\mathrm{C}, \mathrm{E}, \mathrm{E}^{\prime}\right\} \mathrm{JClO}_{4}(\mathrm{E}=\mathrm{S}(10)$, Se (11). The coordination mode of the anionic dichalcogenides as $\mathrm{C}, \mathrm{E}, \mathrm{E}^{\prime}$-tripod ligands has been recently demonstrated for the similar isoelectronic complexes, $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\eta^{3}\right.\right.$ $\left.\left.\left(\mathrm{SePPh}_{2}\right)_{2} \mathrm{CH}\right\}\right] \mathrm{ClO}_{4}$ and $\left[\left(\eta^{6} \mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\left(\eta^{3}\left(\mathrm{SPPh}_{2}\right)_{2^{-}}\right.\right.$ $\mathrm{CH}\}] \mathrm{ClO}_{4}$, whose crystalline structures have been determined by X-ray diffraction [10,11]. For these com-

Table 2
NMR chemical shifts ($\delta \mathrm{ppm}$) and coupling constants (Hz) of iridium(II) complexes ${ }^{\text {a }}$

Complex	${ }^{\text {T }} \mathrm{H}$ NMR		${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
	ring	$\mathrm{CH}_{2}(\mathrm{CH})$	
1	1.4 (d)	3.8 (dd)	-2.2 (d, $\left.\mathrm{P}_{\mathrm{A}}\right),-27.7\left(\mathrm{~d}, \mathrm{P}_{\mathrm{B}}\right)$
	${ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=2.3$	${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=9.5 ;{ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right)=2.0$	${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)=34.6$
2	1.3 (d)	4.6 (at)	-4.5 (d, $\left.\mathrm{P}_{\mathrm{B}}\right), 34.1\left(\mathrm{~d}, \mathrm{P}_{\mathrm{A}}\right)$
	${ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=2.3$	${ }^{2} J(\mathrm{PH})=10.7$	${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)=34$
3	1.3 (d)	4.8 (a)	-3,9 ($\left.\mathrm{d}, \mathrm{P}_{\mathrm{B}}\right), 23.2\left(\mathrm{~d}, \mathrm{P}_{\mathrm{A}}\right)$
	${ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=2.3$	${ }^{2} J(\mathrm{PH})=10.8$	${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)=33.8 ;{ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{Se}\right)=734$
4	$1.8(\mathrm{t})$	$4.7\left(\mathrm{dt}, \mathrm{H}_{\mathrm{a}}\right), 6.3\left(\mathrm{dt}, \mathrm{H}_{\mathrm{b}}\right)$	-39.2 (s)
	${ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=2.8$	${ }^{2} J\left(\mathrm{PH}_{\mathrm{a}}\right)=13 ;{ }^{2} J\left(\mathrm{PH}_{\mathrm{b}}\right)=9.8$	
		${ }^{2} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)=15.8$	
5	$1.7 \text { (d) }$	$4.6\left(\mathrm{~m}, \mathrm{H}_{\mathrm{a}}\right), 4.8\left(\mathrm{~m}, \mathrm{H}_{\mathrm{b}}\right)$	$17.8\left(\mathrm{~d}, \mathrm{P}_{\mathrm{A}}\right), 33.4\left(\mathrm{~d}, \mathrm{P}_{\mathrm{B}} \mathrm{Se}\right)$
	${ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=2.5$		${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)=33.9 ;{ }^{1} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{Se}\right)=550$
6	$1.7 \text { (d) }$	$4.3\left(\mathrm{~m}, \mathrm{H}_{\mathrm{a}}\right), 4.7\left(\mathrm{~m}, \mathrm{H}_{\mathrm{b}}\right)$	$17.8\left(\mathrm{~d}, \mathrm{P}_{\mathrm{A}}\right), 54.7\left(\mathrm{~d}, \mathrm{P}_{\mathrm{B}} \mathrm{~S}\right)$
	${ }^{4} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=2.2$		${ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)=28$
$7 b^{\text {b,c }}$	$1.9(\mathrm{~s})$	$5.2\left(\mathrm{dt}, \mathrm{H}_{\mathrm{a}}\right), 5.7\left(\mathrm{dt}, \mathrm{H}_{\mathrm{b}}\right)$	$34.1(\mathrm{~s})$
		${ }^{2} J\left(\mathrm{PH}_{\mathrm{a}}\right)=12 ;{ }^{2} J\left(\mathrm{PH}_{\mathrm{b}}\right)=17$	
		${ }^{2} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)=14$	
$8 b^{\text {b }}$	1.8 (s)	$5.1\left(\mathrm{dt}, \mathrm{H}_{\mathrm{a}}\right), 6.0\left(\mathrm{dt}, \mathrm{H}_{\mathrm{b}}\right)$	14.9 (s)
		${ }^{2} J\left(\mathrm{PH}_{\mathrm{a}}\right)=14 ;{ }^{2} J\left(\mathrm{PH}_{\mathrm{b}}\right)=16$	${ }^{1} J(\mathrm{PSe})=643 ;{ }^{3} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{Se}\right)=9$
		${ }^{2} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)=14$	
$9^{\text {b }}$	1.9 (s)	$4.8\left(\mathrm{dt}, \mathrm{Ha}_{\mathrm{a}}\right), 5.8\left(\mathrm{dt}, \mathrm{H}_{\mathrm{b}}\right)$	32.9 (s)
		${ }^{2} J\left(\mathrm{PH}_{\mathrm{a}}\right)=14{ }^{2} J\left(\mathrm{PH}_{\mathrm{b}}\right)=14$	
		${ }^{2} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)=14.5$	
$10^{\text {d }}$	1.3 (s)	3.7 (s, br)	58.2 (s)
$11^{\text {e }}$	1.3 (s)	4.3 (t)	41.9 (s)
		${ }^{2} J(\mathrm{PH})=2.7$	${ }^{1} J(\mathrm{PSe})=488$
$12^{\text {b,f }}$		$5.3\left(\mathrm{~m}, \mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}\right)$	31.0 (m, PS), 73.1 (m, P-OMe)
	${ }^{4} J(\mathrm{PH})=3.7$		
$13^{\text {b,g }}$		$5.2\left(\mathrm{~m}, \mathrm{H}_{\mathrm{a}}\right), 5.6\left(\mathrm{~m}, \mathrm{H}_{\mathrm{b}}\right)$	12.1 (m, PSe), 72.5 (m, P-OMe)
	${ }^{4} J(\mathrm{PH})=3.7$ 源		
$14^{\text {n }}$	1.61 (d)	$3.6\left(\mathrm{dt}, \mathrm{H}_{\mathrm{a}}\right), 5.7\left(\mathrm{dt}, \mathrm{H}_{\mathrm{b}}\right)$	$1.1\left(\mathrm{t}, \mathrm{PPh}_{3}\right), 9.0$ (d, PSe)
	${ }^{4} J(\mathrm{PH})=2.4$	${ }^{2} J\left(\mathrm{PH}_{\mathrm{a}}\right)=14 ;{ }^{2} J\left(\mathrm{PH}_{\mathrm{b}}\right)=14$	${ }^{1} J(\mathrm{PSe})=652 ;{ }^{2} J(\mathrm{PP})=27$
		${ }^{2} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)=14$	
16^{i}	1.75 (d)	$4.7\left(\mathrm{dt}, \mathrm{H}_{\mathrm{a}}\right), 7.0\left(\mathrm{dt}, \mathrm{H}_{\mathrm{b}}\right)$	32.5 (s, PSe), 59.8 (s, PO)
	${ }^{4} J(\mathrm{PH})=2.8$	${ }^{2} J\left(\mathrm{PH}_{\mathrm{a}}\right)=14 ;{ }^{2} J\left(\mathrm{PH}_{\mathrm{b}}\right)=16$	${ }^{1} J(\mathrm{PSe})=648$
		${ }^{2} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)=14$	
$17^{\text {j }}$	$\begin{aligned} & 1.79(\mathrm{~d}) \\ & { }^{4} J(\mathrm{PH})=2.8 \end{aligned}$	$5.2\left(\mathrm{dt}, \mathrm{H}_{\mathrm{a}}\right), 7.0\left(\mathrm{dt}, \mathrm{H}_{\mathrm{b}}\right)$	30.7 (s, PS), 39.1 (s, PO)
		${ }^{2} J\left(\mathrm{PH}_{\mathrm{a}}\right)=13 ;{ }^{2} J\left(\mathrm{PH}_{\mathrm{b}}\right)=18$	
		${ }^{2} J\left(\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)=14$	

${ }^{a}$ Measured in CDCl_{3} at room temperature. Chemical shifts relative to $\mathrm{Me}_{4} \mathrm{Si}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ (85%) as external standard. $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ doublet of triplets, at $=$ apparent triplet, $\mathrm{m}=$ multiplet. All complexes show multiplets in the region $\delta 7.4-8.0 \mathrm{ppm}$ corresponding to phenyl groups of the chalcogenide ligands. ${ }^{b}$ Acetone- $\left.\mathrm{d}_{\mathrm{t}}{ }^{\circ}{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 8.9\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me} e_{5}\right), 26.6\left[\mathrm{t}, \mathrm{CH}_{2},{ }^{1} J(\mathrm{PC})=45.4 \mathrm{~Hz}\right], 91.9(\mathrm{~s}$, $\left.C_{5} \mathrm{Me}_{5}\right){ }^{\mathrm{d}}{ }^{13} \mathrm{C}\left\{{ }^{l} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-39.9\left[\mathrm{t}, \mathrm{CH},{ }^{1} J(\mathrm{PC})=50.5 \mathrm{~Hz}\right], 8.8\left(\mathrm{~s}, \mathrm{C}_{5} M e_{5}\right), 89.7\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right){ }^{\mathrm{e}}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}{ }_{3}\right): \delta-42.0[\mathrm{t}$, $\left.\mathrm{CH},{ }^{1} J(\mathrm{PC})=39.8 \mathrm{~Hz}\right], 9.1\left(\mathrm{~s}, \mathrm{C}_{5} M e_{5}\right), 89.4\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right)$. ${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}: \delta 3.9\left[\mathrm{~d},{ }^{3} J(\mathrm{PH})=11.5 \mathrm{~Hz}\right] ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR(DEPT-acetone-d $): \delta 9.3(\mathrm{~s}$, $\mathrm{C}_{5} \mathrm{Me}_{5}$), $27.9\left[\mathrm{t}, \mathrm{CH}_{2},{ }^{1} J(\mathrm{PC})=44.3 \mathrm{~Hz}\right], 56.3$ [d, MeOP, $\left.{ }^{2} J(\mathrm{PC})=8.5 \mathrm{~Hz}\right] .{ }^{\mathrm{g}}{ }^{i} \mathrm{H} \mathrm{NMR}: \delta 4.0\left[\mathrm{~d},{ }^{3} J(\mathrm{PH})=11.6 \mathrm{~Hz}\right] ;{ }^{13} \mathrm{C}\left\{{ }^{\prime} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}{ }_{3}\right): \delta$ $9.5\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 26.7\left[\mathrm{t}, \mathrm{CH}_{2},{ }^{1} J(\mathrm{PC})=38.6 \mathrm{~Hz}\right], 56.5\left[\mathrm{~d}, \mathrm{MeOP},{ }^{2} J(\mathrm{PC})=8.7 \mathrm{~Hz}\right], 101.9\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right){ }^{\text {h }}{ }^{\text {h }}$ Nitromethane-d ${ }_{3}{ }^{1}{ }^{1} \mathrm{H}$ NMR: $\delta 3.5[\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{PH})=11.1 \mathrm{~Hz}\right] .{ }^{\mathrm{j}} \mathrm{H}$ NMR: $\delta 3.3\left[\mathrm{~d},{ }^{3} J(\mathrm{PH})=11.1 \mathrm{~Hz}\right],{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 8.5\left(\mathrm{~s}, \mathrm{C}_{5} M e_{5}\right), 26.0\left[\mathrm{t}, \mathrm{CH}_{2},{ }^{1} J(\mathrm{PC})=43.0 \mathrm{~Hz}\right], 50.8(\mathrm{~d}$, $\left.\mathrm{MeOP},{ }^{2} J(\mathrm{PC})=8.0 \mathrm{~Hz}\right), 97\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right)$.

Scheme 1. $\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{OMe}, \mathrm{E}=\mathrm{S}, \mathrm{Se} ; \mathrm{A}=\mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}$; (i) dp$\mathrm{pmE}_{2}, \mathrm{NaClO}_{4}$ or TlBF_{4}; (ii) $\mathrm{NaH}-\mathrm{THF}$ or $\mathrm{Tlpz}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (iii) $\mathrm{P}(\mathrm{OMe})_{3}, \mathrm{TlBF}_{4}$; (iv) $\mathrm{NaI}, \mathrm{Me}_{2} \mathrm{CO}$; (v) TlBF_{4}.
pounds the ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right)$ NMR spectra showed that the formation of the metal-carbon bond produced a strong increase in shielding of the methanide carbon. As expected, the ${ }^{1} \mathrm{H}$ NMR spectra of complexes 10 and 11 show only one signal for the methanide proton, confirming that the methylene group in the starting complexes undergoes deprotonation and their ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show a large increase of shielding of the methanide carbon appearing as a triplet signal in the range δ 40-42 ppm, supporting the proposed formulation. Similar synthetic results were obtained by reaction of the cationic complexes with thallium pyrazolate in dichloromethane solution or with TlBF_{4} in acetone solution, in the presence of pyridine. In both cases the chloride ligand is precipitated as TlCl and the pyrazolate anion or pyridine caused the deprotonation of the
chalcogenide ligands. The methanide carbon group formed is bonded to the metal centre, even in the presence of a large excess of pyridine. These cationic

Table 3
Fractional atomic coordinates ($\times 10^{4}$) and temperature parameters ($\AA^{2} \times 10^{3}$), with e.s.ds. in parentheses

Atom	x	y	z	$U^{\text {a }}$
Ir(1)	2820(1)	-5702(1)	23(1)	39(1)
P(1)	2921(1)	-4177(2)	-585(1)	52(1)
P (2)	1497(1)	-3495(1)	659(1)	40(1)
$P(3)$	3183(1)	- 3858(1)	1344(1)	$39(1)$
S(1)	1559(1)	- 5087(1)	385(1)	49(1)
S(2)	3750(1)	- 4837(1)	777(1)	48(1)
O(1)	2898(3)	-3028(4)	-341(2)	68(2)
O(2)	3759(3)	-4374(4)	-903(2)	84(2)
O(3)	2224(4)	- 4304(4)	-1139(2)	86(2)
C(1)	3313(4)	$-7439(5)$	295(3)	$50(2)$
C(2)	2475(4)	-7513(5)	191(3)	47(2)
C(3)	2250(4)	-7141(5)	-438(3)	54(2)
C(4)	2972(4)	-6899(6)	-707(3)	57(2)
C(5)	$3640(4)$	-6992(5)	-245(3)	54(2)
C(6)	3805(4)	-7785(6)	880(3)	75(3)
C(7)	1886(4)	-7943(6)	611(3)	68(3)
C(8)	1402(5)	-7207(6)	-755(4)	84(3)
C(9)	3031(6)	-6702(7)	-1376(3)	$99(4)$
C(10)	4534(4)	-6891(8)	-332(4)	96(4)
C(11)	4011(5)	-3672(9)	-1362(4)	111(4)
C(12)	1908(6)	-3431(8)	-1489(4)	98(4)
C(13)	2477(3)	- 2889(5)	941(3)	42(2)
C(14)	1057(4)	-2558(5)	66 (3)	45(2)
C(15)	526(4)	-2996(7)	-393(3)	60(2)
C(16)	173(5)	- 2305(8)	-847(3)	72(3)
C(17)	318(5)	- 1213(9)	-827(4)	83(4)
C(18)	836(6)	-751(8)	-377(5)	107(4)
C(19)	1215(5)	-1439(6)	81(4)	80(3)
C(20)	831(3)	- 3421(5)	1267(3)	44(2)
C(21)	724(4)	-2395(6)	1545(3)	64(3)
C(22)	218(5)	- 2335(8)	2023(3)	$77(3)$
C(23)	-160(5)	- 3268(9)	2213(3)	80(3)
C(24)	-71(4)	- $4274(8)$	1935(3)	$69(3)$
C(25)	435(4)	-4362(6)	1466(3)	$56(2)$
C(26)	3978(4)	- 3044(5)	1749(3)	45(2)
C(27)	4070(4)	- 1928(6)	1667(4)	73(3)
C(28)	4736(6)	- 1355(7)	1968(5)	99(4)
C(29)	5280(5)	-1933(8)	2348(4)	80(3)
C(30)	5207(5)	-3044(8)	2417(4)	91(4)
C(31)	4557(4)	-3594(7)	2125(3)	$77(3)$
C(32)	2660(4)	-4583(5)	1907(3)	44(2)
C(33)	2558(4)	- 5744(6)	1887(3)	57(2)
C(34)	2148(5)	-6286(6)	2314 (3)	72(3)
C(35)	1826(5)	- 5676(8)	2765(3)	79 (3)
C(36)	1924(5)	-4517(7)	2796(3)	74(3)
C(37)	2338(4)	- 3977(6)	2371(3)	56(2)
$F(1)$	1489(5)	348(8)	1940(5)	226(6)
$F(2)$	2303(4)	-267(4)	1303(2)	120(3)
F(3)	2768(5)	816(6)	2054(3)	173(4)
F(4)	2383(5)	-977(5)	2193(3)	141(3)
B(1)	2238(7)	9(9)	1890(5)	82(4)
$\mathrm{O}(1) \mathrm{s}$	3967(15)	- 10339(17)	-996(11)	220(14)
C(1)s	3550(27)	- 10209(17)	- 547(17)	199(22)
C(2)s	2764(14)	-9719(16)	-699(8)	95(8)
C(3)s	3652(13)	- 10558(13)	53(9)	$100(8)$

[^1]compounds are surprisingly inert in reaction with PPh_{3}, $\mathrm{P}(\mathrm{OMe})_{3}$, dppm or dppe, and only react with aqueous HCl in acetone solution regenerating the starting complexes.

However, the reaction of the cationic complexes $7 \mathbf{b}$ and $\mathbf{8 b}$ with TlBF_{4} in the presence of a slight excess of $\mathrm{P}(\mathrm{OMe})_{3}$ involves the precipitation of TlCl and the coordination of the ligand with formation of the dicationic complexes $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left\{\eta^{2} \mathrm{dppmE}_{2}-\right.\right.$ $\left.\left.E, E^{\prime}\right\}\right]\left(\mathrm{BF}_{4}\right)_{2} \quad\left(\mathrm{E}=\mathrm{S}(12)\right.$, Se (13)). Their ${ }^{1} \mathrm{H}$ NMR spectra exhibit the expected methyl proton resonances for the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring and for the trimethylphosphite ligand, together with two multiplet resonances for the hydrogen atoms of the methanide group. For the disulphide complex, the methanide protons have a similar chemical shift and the signal appears as a very broad multiplet. The high resolution ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra exhibit two unresolved multiplet resonances assigned to the different phosphorus atoms, $\mathrm{P}(\mathrm{OMe})_{3}$ and $\mathrm{P}=\mathrm{E}$. These results suggest the presence of non-equivalent $\mathrm{P}=\mathrm{E}$ groups, probably owing to a distortion of the coordinated chalcogenide ligand.

In contrast, when the above reaction was carried out with PPh_{3}, the corresponding dicationic complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left\{\mathrm{PPh}_{3}\right\}\left\{\eta^{2} \mathrm{dppmSe} \mathrm{e}_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}\right]\left(\mathrm{BF}_{4}\right)_{2} \quad$ (14) was obtained. In this case, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra
exhibit a triplet signal and a doublet signal at $\delta 1.1$ and 9.0 ppm , assigned to the PPh_{3} and $\mathrm{P}=\mathrm{Se}$ groups respectively.

All attempts to deprotonate the coordinated chalcogenide ligand in these compounds (12-14) were unsuccessful. Thus, treatment with sodium hydride in tetrahydrofuran gave a mixture of uncharacterized brown solid, and the reaction of complexes 12 and 13 with thallium pyrazolate or potassium tert-butoxide in dichloromethane, transform the coordinated trimethylphosphite into a dimethylphosphonate ligand via a Michaelis-Arbuzovtype reaction [18], giving monocationic complexes of formula $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\eta^{2} \mathrm{dppmE}_{2}-\right.\right.$ $\left.\left.\mathrm{E}, \mathrm{E}^{\prime}\right\}\right] \mathrm{BF}_{4}$, in low yields. When this type of reaction was carried out in acetone using a large excess of sodium iodide, the metathetic exchange of the BF_{4} anion was produced and the corresponding iodide complexes were isolated $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\eta^{2} \mathrm{dppmE}_{2}-\mathrm{E}, \mathrm{E}^{\prime}\right\}\right] \mathrm{I}$ ($\mathrm{E}=\mathrm{S}(15)$, $\mathrm{Se}(16)$). For these compounds, the phos-phorus-phosphorus coupling is not observed and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra exhibit only two singlet resonances, corresponding to $\mathrm{PO}(\mathrm{OMe})_{2}$ and equivalent $\mathrm{P}=\mathrm{E}$ groups.

The complex 15 reacts with an excess of TlBF_{4} in acetone to give in good yield the complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ $\left.\operatorname{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\eta^{2} \mathrm{dppmS}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right\}\right] \mathrm{BF}_{4}$ (17). The structure

Fig. 1. ORTEP view of the structure of the cationic complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \operatorname{lr}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\left\{\eta^{2}\left(\mathrm{SPPh}_{2}\right)_{2} \mathrm{CH}_{2}-\mathrm{S}_{3} \mathrm{~S}^{\prime}\right\}\right]^{+}$showing the atom numbering. Hydrogen atoms have been omitted for clarity.

Table 4
Selected bond lengths (\AA) and angles (deg), with e.s.ds. in parentheses

$\operatorname{Ir}(1)-\mathrm{P}(1)$	$2.273(2)$	$\mathrm{P}(1)-\mathrm{O}(1)$	$1.475(5)$
$\operatorname{Ir}(1)-\mathrm{S}(1)$	$2.4089(2)$	$\mathrm{P}(1)-\mathrm{O}(2)$	$1.621(6)$
$\operatorname{Ir}(1)-\mathrm{S}(2)$	$2.389(2)$	$\mathrm{P}(1)-\mathrm{O}(3)$	$1.604(5)$
$\operatorname{Ir}(1)-\mathrm{C}(1)$	$2.284(6)$	$\mathrm{P}(2)-\mathrm{C}(13)$	$1.825(5)$
$\operatorname{Ir}(1)-\mathrm{C}(2)$	$2.272(6)$	$\mathrm{P}(2)-\mathrm{C}(14)$	$1.819(6)$
$\operatorname{Ir}(1)-\mathrm{C}(3)$	$2.164(6)$	$\mathrm{P}(2)-\mathrm{C}(20)$	$1.810(6)$
$\operatorname{Ir}(1)-\mathrm{C}(4)$	$2.181(7)$	$\mathrm{P}(3)-\mathrm{C}(13)$	$1.814(5)$
$\operatorname{lr}(1)-\mathrm{C}(5)$	$2.164(7)$	$\mathrm{P}(3)-\mathrm{C}(26)$	$1.800(6)$
$\mathrm{P}(2)-\mathrm{C}(13)$	$1.825(5)$	$\mathrm{P}(3)-\mathrm{C}(32)$	$1.796(6)$
$\mathrm{P}(3)-\mathrm{C}(13)$	$1.814(5)$	$\mathrm{O}(2)-\mathrm{C}(11)$	$1.410(1)$
$\mathrm{P}(2)-\mathrm{S}(1)$	$1.998(2)$	$\mathrm{O}(3)-\mathrm{C}(12)$	$1.370(1)$
$\mathrm{P}(3)-\mathrm{S}(2)$	$2.003(2)$		
$\mathrm{S}(1)-\operatorname{Ir}(1)-\mathrm{S}(2)$	$99.0(1)$	$\mathrm{S}(2)-\mathrm{P}(3)-\mathrm{C}(32)$	$115.5(2)$
$\mathrm{S}(1)-\operatorname{Ir}(1)-\mathrm{P}(1)$	$93.6(1)$	$\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{C}(13)$	$114.2(2)$
$\mathrm{S}(2)-\mathrm{Ir}(1)-\mathrm{P}(1)$	$89.3(1)$	$\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{C}(14)$	$113.2(2)$
$\operatorname{Ir}(1)-\mathrm{S}(1)-\mathrm{P}(2)$	$117.3(1)$	$\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{C}(20)$	$108.7(2)$
$\mathrm{Ir}(1)-\mathrm{S}(2)-\mathrm{P}(3)$	$112.3(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107.4(6)$
$\mathrm{Ir}(1)-\mathrm{P}(1)-\mathrm{O}(1)$	$121.5(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.9(5)$
$\mathrm{Ir}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	$104.5(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$108.1(6)$
$\mathrm{Ir}(1)-\mathrm{P}(1)-\mathrm{O}(3)$	$106.3(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$106.9(6)$
$\mathrm{S}(2)-\mathrm{P}(3)-\mathrm{C}(13)$	$112.3(2)$	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$109.2(5)$
$\mathrm{S}(2)-\mathrm{P}(3)-\mathrm{C}(26)$	$105.2(2)$		

of this complex, established by an X-ray diffraction study, is shown as an ORTEP diagram in Fig. 1. Table 3 and 4 list atomic coordinates and equivalent isotropic thermal parameters of non- H atoms, and relevant bond distances and angles respectively. In the cation, the iridium atom shows a distorted octahedral coordination sphere, commonly referred as a 'three-legged piano stool' configuration, with the centroid of the pentamethylcyclopentadienyl ligand occupying the centre of three octahedral sites, the bis(diphenylphosphine) methylene disulphide ligand bonded to the iridium atom through two sulphur atoms and a dimethylphosphonate group bonded through the phosphorus atom completing the coordination sphere.

The methyl substituents are bent away from the iridium atom and the $\mathrm{Ir}-\mathrm{C}_{5} \mathrm{Me}_{5}$ (centroid) distance is $1.851 \AA$ (individual iridium-carbon distances range from $2.164(7)$ to $2.284(6) \AA$) and compares well with those found in other pentamethylcyclopentadienyl iridium complexes [19-22]. The five membered carbocyclic ring involves two shorter bonds $\mathrm{C}(1)-\mathrm{C}(2)$ and $C(3)-C(4)$ and three larger ones $C(2)-C(3), C(4)-C(5)$ and $\mathrm{C}(1)-\mathrm{C}(5)$, suggesting some degree of localized 'di- π-olefin' bonding [22,23], although the differences in the bonds lengths are within the accuracy limits.

The Ir-S distances (2.408(2) and 2.388(2) \AA) are similar to those found in the thiolate complex [$\operatorname{Ir}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3}$] (average: $2.370(2) \AA$) [24]. The $\mathrm{P}-\mathrm{S}$ (1.998(2) and 2.003(2) \AA) and $P-C(13)$ (1.825(5) and $1.814(5) \AA)$ distances of the coordinate bidentate ligand are similar to those found in the related complexes
$\left[\mathrm{Rh}\left(\eta^{4} \operatorname{cod}\right)\left(\eta^{2}-\mathrm{dppmS} \mathrm{S}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right)\right] \mathrm{ClO}_{4} \quad(\mathrm{P}-\mathrm{S}:$ average $1.998(6) \AA)$ [5] and $\left[\mathrm{CuCl}\left(\eta^{2}-\mathrm{dppmS}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right)\right](\mathrm{P}-\mathrm{S}:$ average 1.973(2); P-C: average 1.816(6) \AA) [2]. The Ir-P distance ($2.273(2) \AA$) and the phosphoryl $\mathrm{P}=\mathrm{O}$ distance (1.475(5) \AA) are comparable with those found for the terminal phosphonate ligand in the complex $\left[\left(\eta^{5} \mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ir}\left\{\mathrm{PO}(\mathrm{OMe})_{2}\right\}\{\mu \text {-PO(OMe })_{2}\right\}\left(\mu-\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$ $\mathrm{Rh}(\mathrm{cod})]$ ($\mathrm{Ir}-\mathrm{P}: 2.249(2) \AA ; \mathrm{P}=\mathrm{O}: 1.486(7) \AA$) [25]. The $\mathrm{P}-\mathrm{OMe}$ distances and the $\mathrm{P}-\mathrm{O}-\mathrm{Me}$ angles, however, vary within the usual range [26].

Acknowledgements

This work was supported by the Fondo de Desarrollo Científico y Tecnológico, Chile (Grant No. 460/93). The authors are indebted to the X-ray Structural Centre (XRSC), General and Technical Chemistry Division, Academy of Sciences of Russia, for the X-ray measurements.

References

[1] E.W. Ainscough, A.M. Brodie and E. Mentzer, J. Chem. Soc. Dalton Trans., (1973) 2167.
[2] E.W. Ainscough, H.A. Bergen, A.M. Brodie and K.A. Brown, J. Chem. Soc. Dalton Trans., (1976) 1649.
[3] M. Lusser and P. Peringer, Inorg. Chim. Acta, 127 (1987) 151.
[4] A. Laguna, M. Laguna, A. Rojo and M.N. Fraile, J. Organomet. Chem., 315 (1988) 269.
[5] M.S. Abassioun, P.A. Chaloner, C. Claver, P.B. Hitchcock, A.M. Masdeu, A. Ruiz and T. Saballs, J. Organomet. Chem., 403 (1991) 229.
[6] A. Davinson and D.L. Reger, Inorg. Chem., 10 (1971) 1967.
[7] J. Browning, G.W. Bushnell, K.R. Dixon and R.W. Hilts, J. Organomet. Chem., 434 (1992) 241.
[8] R. Contreras, M. Valderrama and S. Yañez, Transition Met. Chem., 18 (1993) 73.
[9] J. Browning, G.W. Bushnell, K.R. Dixon and A. Pidcock, Inorg. Chem., 22 (1983) 2226.
[10] M. Valderrama, R. Contreras, M. Bascuñan and D. Boys, Polyhedron, 13 (1994) 1101.
[11] M. Valderrama, R. Contreras, M. Bascuñan, S. Alegría and D. Boys, Polyhedron, 14 (1995) 2239.
[12] M. Valderrama and R. Contreras, Bol. Soc. Chil. Quim., 40 (1995) 111.
[13] S.O. Grim and E.D. Walton, Inorg. Chem., 19 (1980) 1982.
[14] P.M. Maitlis, Acc. Chem. Res., $1 /$ (1978) 301.
[15] M. Scotti, M. Valderrama, R. Moreno, R. López and D. Boys, Inorg. Chim. Acta, 216 (1994) 67.
[16] S.W. Carr and R. Colton, Aust. J. Chem., 34 (1981) 35.
[17] (a) S. Muralidharan, J.H. Espenson and S.A. Ross, Inorg. Chem., 25 (1986) 2557. (b) M.P. Brown, J.R. Fisher, R. Puddephat and K.R. Seddon, Inorg. Chem., I8 (1979) 2808.
[18] T.B. Brill and S.J. Landon, Chem. Rev., 84 (1984) 577.
[19] D. Carmona, L.A. Oro, M.P. Lamata, J. Elguero, M.C. Apreda, C. Foces-Foces and F.H. Cano, Angew. Chem. Int. Ed. Engl., 25 (1986) 1114.
[20] D. Carmona, F.J. Lahoz, L.A. Oro, J. Reyes and M.P. Lamata, J. Chem. Soc. Dalton Trans., (1990) 3551.
[21] D. Carmona, F.J. Lahoz, L.A. Oro, M.P. Lamata and S. Buzarra, Organometallics, 10 (1991) 3132.
[22] D. Carmona, J. Ferrer, F.J. Lahoz, L.A. Oro, J. Reyes and M. Esteban, J. Chem. Soc. Dalton Trans., (1991) 2811.
[23] A.S. Batsarov and Yu.T. Struchkov, J. Organomet. Chem., 265 (1984) 305.
[24] C.L. Raston and A.H. White, J. Chem. Soc. Dalton Trans., (1976) 32.
[25] M. Valderrama, J. Cuevas, D. Boys, D. Carmona, M.P. Lamata, F.J. Lahoz and L.A. Oro, in preparation.
[26] D.E.C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam, 1974.

[^0]: * Corresponding author.

[^1]: ${ }^{\text {a }}$ Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i, j}$ tensor.

